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a = d + v, Y = p(rod + v), - p = pi3 + l/,a 

Then conditions (2.5) have the form 

IL (‘08 + v)a - (l45 + ‘lzu) > 0, lb (?JB’ + v’)’ - (@’ + ‘/,a.)’ > 0 

The motion (0.2) of a body is hence stable. 
(2.6) 
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Kinematic interpretation of the motion of a body is based on kinematic equations put 
forward by Kharlamov [1]. The moving angular velocity hodograph was considered in 
our earlier paper p] in which we classified all the characteristic forms of the moving 
hodograph. In the present paper we shall consider the stationary hodograph in all these 
cases and give a geometric picture of the motion of a body. 

1. The motion of the body can be described as slipless rolling of the moving axoid 
of angular velocity vector on the stationary axoid. The moving hodograph in the Hess’ 

solution was already fully studied in r2], and we shall make use of the results of this study 

and take the same notation. 
The moving hodograph lies in the plane o1 = */2 coa; its projection on the plane 

or = 0 is the curve s the equations of which in polar coordinates Q and cp(or = p cos cp, 
o, = p sin 0) have the form 

PP’ = Y-m p%p’ = - ps cos cp + k 

(ftP)=p+-(+h)l-krj 0.1) 

the dot superscript denotes differentiation with respect to the dimensionless time T. 
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From the first equation of (1.1) we find that p is an elliptical function of the time T 
with the period Pt 

T=2p, ??k S 
Considering the curve s for various values of parameters @] we can distinguish four 

characteristic cases : 
1”. The curve s has a limiting closed trajectory S, and does not pass through a 

singular point. 
2’. The curve s has a limiting closed trajectory S, and passes through a singular 

point. 
3’. There is no closed limiting trajectory S, for the curve t , it belongs to the 

type F,, apart from that section which crosses the line L ; this section belongs to the 

type F2. 
4’. There is no closed limiting trajectory S, for the curve s , it belongs to the 

type Fl. 
Let us consider the motion of the body in each of these cases. 

2, The stationary hodograph is constructed on the basis of kinematic equations pre- 

sented by Kharlamov in IJ] oc (a) = ol(a)vl(a) + oa(a)vz(u) + o,(u)v,(u) 

op2(u) = q2(u) + 022(u) + OS’(U) - “i 

I VI (4 v2 (a) VA (4 

Taking T as the independent variable of U, we have 

or. = Ii2 p cos cp (p - ~18) + k, opa = pl (t/4~a COST cp + 1) - q (2.1) 

a*=<,-(k-Pcoslp)(-$ -la--~w) (vl=+cosIp*$ainq v/q) (2.2) 

Equations (1.1) define the dependence of p and cp on time r . The sign in front of 

the root in the expression for vr depends on the choice of initial conditions. Let us take 
them in such a way that the sign is positive. 

Equations (2.1) define the meridian of the surface of revolution on which lies our 
stationary hodograph. The meridian is bounded by the straight lines 

mp = V&a (key - pr% up= v& @y-f-4 (2.3) 

In the Cases 1’ and 2”, the meridian tends to the limiting closed curve for z 4 00 
and in the cases 3’ and 4’ such limiting curve for the meridian does not exist. 

Let us explain the conditions under which o,.vanishes. using Eq. (2.1) we shall repre- 
sent oPa as a function of cos cp , and then find the values of 0 for which op = 0. We 

obtain the equation 
~,4E~p~~-(~--_)a]~o~e~-ckp (++osrp~fpr--=O 

This equation has real solutions only for f(p) = 0, i.e. when p assumes the limit value 
p1 or p11. In this case cpzfarccoa(2 v/Pa-k’lck) (2.4) 

There are, therefore, some points on the moving hodograph for which op = 0 ; the 
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number of such points varies between 4 and 0, depending on whether 2 V/P% - ks / & 

is greater or smaller than unity for p = pr or pa. 

At the instants when cp has the values determined by (8.4) the stationary hodograph 

passes through the vertical axis. 

It can be proved from (2. ‘L) that at the instants when the curve 6 intersects line L the 

direction of variation of angle a changes to opposite, i.e. a has then an extremum 

point. 
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Figure 1 shows the meridians for Cases 1” to 4”. In the Cases 1”. S” and 4” the ini- 

tial point of the curve I was chosen on the external circumference p = pz in the domain 

Gs(q~ = O.i), and in the Case 2” in the domain G, (cp = - 2.99085). 

The following values of the parameters were taken in individual cases : 

k = 2.0, e = 1.5, h = 3.0 U”, 2”) 

k = 0.4, c = 0.8, h = 0.2 (3”) 

k = 0.4, c = 0.8, h = - 0.2 (4”) 

It must be pointed out that the curve S and the meridian line both rapidly tend to the 

limiting curves, In the Cases 1” and 8”. even for T > 52’. the distance between the points 

of these curves and the corresponding points of limiting curves is less than 0.0001. 

For these cases, the stationary hodograph is represented in Fig.2 as curve H . 

3. Interpretation of the motion can now proceed as follows, We first construct the 

moving hodograph, and for this purpose we project the curve s onto plane q = ‘12 c(I)~. 

We specify the initial values of p and v, i.e. we choose the initial point on the moving 

hodograph. From (P. 1) we obtain oc and op. This defines the position of the moving 

hodograph on the stationary hodograp’i :II IIIC initial instant. We obtain the graph of 

motion by combining those points of tile moving and the stationary hodographs which cor- 

respond to the same instants of time. 

Figure 9 shows the position of the hodographs at some instant. The arrows indicate 

the direction of the further movement of the osculating point of the two hodographs. 

In the Cases 1” and 2” (Fig.2) the body moves clockwise round the vertical. The 

asymptotic motion (corresponding to the closed limiting trajectory S,) is the motion 

\~hicll repeats in space with a period T = T, if the body is rotatetl by an angle Aa rou?l 

the vertical. Yor the chosen values of parameters Aa = 0.1398. Quantities c, h and k 

can be chosen so tnat the asymptotic motion is periodic, i. e. Aa = 0. 

In the Case 3” (Fig. 2) the body moves in such a way that the angl? a oscillates round 
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the zero position in both directions. 

Fig. 2 

In the Case 4’ (Fig.2) the angle increases infinitely with the time. The body moves 

anticlockwise round the vertical. 

4. Let us consider the solutions in which p = const. The set of equations (1.1) has 
two such solutions : p = p1 and p = pi. In order to satisfy the kinematic equations by 

these solutions, one of the following equalities must hold 

k’c - 2p’(p* / c - h) = 0 or 2c 9h -h’+(h’+3)1/V]-27k’=O 

The meaning of this condition is that o1 = ~2 = pII, i.e. I(l),,) = 0. while for all 

other values of p we have I(p) < 0. The domain G has under these conditions degener- 

ated into a circle which represents the curve S. The moving hodograph is an ellipse. 

Let us write now the equations of the stationary hodograph : 
k”C? kc 

or. = qg cos ‘P -I- k, (11~ - L 
-7 ( Is \cos cp - pea 

dz 2P”l 
- zzz 
dcp kc (k - p$ cos (P) 

(4.1) 

(4.2) 

The dependence of cp on time 5 is defined by the equation 

po”cp’ = - po” cos cp + k 
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When cos cp is eliminated in (4.13, we find that the meridian is a rectilinear section 

Fig. 3 

kc k3c2 
y==2po~ y,+ ‘Ipae-f-k 

Further investigation is carried out for two variants. 

1. The case of k < p$, A point determined by-cpo = 
= arccos k / po3 exists on the moving hodograph and 

this point is reached when T -+ M. Equation (4.2) 
makes it clear that a -p 00 when 9, -+ 90. The station- 

ary hodograph lies on a cone; it is a finite length 
curve, winding an infinite number of times on the axis 

% 
In this case, the body moves anticlockwise round the 

vertical and when r -+ 03 the motion tends to become 
uniform rotation round the vertical axis with an angu- 

lar velocity w = l/4kW / pea + k. The position of the 

hodograph is shown in Fig. 3, a (initial point has been 

taken in domain ca). 
2, The case of k > ~33. When z -+ 00 we have 

9, + w and a + M. The variable point 
the moving hodograph in a period 

The curve of the stationary hodograph 
of the cone bounded by two planes 

travels round 

lies on a part 

9 = k + '/4k?c2 / po3, or. = k - =/,kV / p$ 

The stationary hodograph needs to be constructed only for time interval [O,T,J because 

its subsequent part which corresponds to the interval JT,, 2Trl can be obtained from the 
first part by simply turning it by the angle a0 = 4p04n / kc v/k - po6. 

At the initial instant (.t = 0) we combine that point of the moving hodograph which 
corresponds to ‘p = o with the point of the stationary hodograph lying on the lower 

parallel. At the instant T = kT, (k = 0,1,2..,) the moving hodograph touches the lower 

parallel and at the instants T = %(2k + I)Tz it touches the upper parallel. The body 
is in precessional motion round the vertical (Fig. 3, b). 

The author thanks P, V. Khariamov for guidance and G. V. Mozalevskaia for valuable 

discussion. 
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